
A framework for utterance disambiguation in dialogue

Pont Lurcock, Peter Vlugter, Alistair Knott
Department of Computer Science

University of Otago
New Zealand

{pont,pvlugter,alik}@cs.otago.ac.nz

Abstract

We discuss the data sources available for ut-
terance disambiguation in a bilingual dialogue
system, distinguishing global, contextual, and
user-specific domains, and syntactic and seman-
tic levels. We propose a framework for combin-
ing the available information, and techniques for
increasing a stochastic grammar’s sensitivity to
local context and a speaker’s idiolect.

1 Introduction

Resolving the ambiguities present in an incom-
ing utterance is a key task in natural language
processing. Interpreting an utterance, whether
semantically, syntactically or phonologically, is
typically construed as a two-stage process: the
first stage involves deriving a set of all possi-
ble analyses, using relatively well-defined prin-
ciples, and the second stage involves selecting
between these analyses, using principles that are
harder to define and formalize.

This paper considers principles for disam-
biguating utterances in a human-machine dia-
logue system. Our main goal is to present a
framework for integrating the different sources
of information relevant to this task, and the
available techniques for making use of this in-
formation. Working with a dialogue system
highlights the need for such a framework; there
are additional types of ambiguity that need to
be considered (such as dialogue act ambiguity),
and a particularly diverse set of informational
resources to consult (many of which relate to the
current dialogue context). At the same time,
there are additional opportunities available—in
particular, the ability to ask the user clarifica-
tion questions if a given ambiguity cannot be
otherwise resolved.

We begin in Section 2 with an analysis of the
kinds of disambiguation needed in our dialogue
system, and of the information available to the
system to perform the task. In Section 3, we

outline a general framework for performing dis-
ambiguation in a dialogue system. In Sections 4
and 5, we describe how our system implements
this framework. We conclude in Section 6 with
an account of our current work.

2 Sources of information available
for utterance disambiguation

Utterance interpretation is typically modelled
as a pipeline process, beginning with phono-
logical interpretation, proceeding with syntactic
analysis and semantic analysis, and concluding
with discourse or dialogue attachment. We will
illustrate by showing the pipeline used in our
own bilingual English/Māori dialogue system,
Te Kaitito (see e.g. Knott and Wright (2003);
Knott et al. (2004)). Our pipeline is shown in
Figure 1. Since our input is a written sentence

Dialogue act
identification

Sentence
parsing

Presupposition
resolution

Figure 1: The utterance interpretation pipeline

we begin with sentence parsing, using the LKB
system (Copestake and Flickinger, 2000). LKB
works with HPSG-like grammars; the gram-
mar we use is bilingual, simultaneously encod-
ing a fragment of English and Māori (Knott et
al., 2002). LKB’s parser delivers ‘flat’ seman-
tic representations in a format called Minimal
Recursion Semantics (MRS) (Copestake et al.,
1999), which are turned into Discourse Repre-
sentation Structures (DRSs) distinguishing be-
tween an assertion and a set of presuppositions
(Kamp et al., in preparation). These DRSs are
then passed to a presupposition resolution mod-
ule, which finds referents for anaphora, definite
NPs, and other presuppositional constructions.
The resolved DRSs are passed to a dialogue act
identification module, which determines the di-
alogue act made by the utterance.



Ambiguities can arise at any point in this
pipeline. There can be many parses of the sen-
tence, many semantic interpretations of a parse
tree, many ways to resolve the presuppositions
in a semantic interpretation, and many ways to
interpret the resulting structure as a dialogue
act. By the end of the pipeline, there can be a
large number of interpretations consistent with
the original input sentence. How should one in-
terpretation be chosen?

To answer this question, it is useful to sur-
vey the kinds of information available to a sys-
tem for the resoluton of ambiguities. There are
two ways of thinking about this information.
Firstly, relevant information can appear at dif-
ferent levels, suitable for use at different points
in the pipeline. Some information is syntac-

tic: as is now well known1 we can make use of
statistics about the relative frequency of syn-
tactic constructions in a corpus to decide be-
tween alternative analyses. Other information
is semantic: for instance, we can specify a
set of axioms about what are considered nor-
mal circumstances, and use a theorem-prover
to determine which candidate interpretation is
most consistent with these. Syntactic informa-
tion can be used to resolve syntactic ambigui-
ties, and semantic information can be used to
resolve ambiguities in semantic interpretation
and discourse attachment. Secondly, relevant
information can come from different domains,
of which we consider three prominent ones: the
world, the speaker model, and the dialogue

context. Domains and levels of information are
roughly orthogonal; Table 1 summarizes their
possible combinations.

level
syntactic semantic

world general
corpus
statistics

world
knowledge
axioms

domain speaker
model

language
model of
the user

axioms
about
user

dialogue
context

statistics
about
recent
context

context-
matching
operations

Table 1: Domains and levels of information for
use in utterance disambiguation

This division is remeniscent of Menzel and

1See e.g. Manning and Schütze (1999, Chapter 12).

Schröder’s (1999) concept of multi-level parsing,
although they do not use the orthogonal domain
and level classifications shown here.

To illustrate these categorizations, consider a
well-known example of syntactic ambiguity:

(1) Fruit flies like a banana.

Under the most intuitive reading (call it Read-
ing 1), the sentence is about what fruit flies like
to eat. But it can also be interpreted (Read-
ing 2) as being about the way fruit tends to fly
through the air. We can use different sorts of
knowledge to help decide between these alter-
natives.

Firstly, we could use world knowledge—for
example, the fact that fruit doesn’t typically fly,
or that insects often like fruit. This information
could take the form of axioms in some suitable
logical language, directly encoding such propo-
sitions. But it could also take the form of statis-
tics about common syntactic structures in wide-
domain corpora, which indicate that the prob-
ability of the verb fly taking a subject headed
by fruit is vanishingly low. These statistics can
also be seen as a form of world knowledge, al-
beit one encoded in a far less explicit way than
a set of logical propositions.

Knowledge about the speaker of the sentence
is also of use in helping to disambiguate. For
instance, if the speaker is known to be a ge-
neticist, this would support Reading 1, while if
she is an aerodynamicist, this might generate a
weak preference for Reading 2. Again, knowl-
edge of the speaker can either be semantic (e.g.
taking the form of logical axioms) or syntactic
(e.g. statistics derived from a set of her previous
utterances).

Finally, an utterance’s context provides
strong constraints on disambiguation. Again,
this information can be syntactic (a recent us-
age of fly as a verb or noun would lend sup-
port to the corresponding interpretation) or se-
mantic, involving use of a logical representation
of the dialogue context: an utterance is scored
by the ease with which it can be incorporated
into the context (Knott and Vlugter, 2003). For
instance, if the utterance answers the question
How does fruit fly?, we may assume Reading
2; if it answers the question What do fruit flies
like?, we have very strong evidence for Reading
1.

In summary: we can distinguish six broad
categories of information relevant to utterance
disambiguation, classifying orthogonally by do-



main and level.

3 A framework for utterance
disambiguation

The central question in this paper is: how can
we incorporate disambiguation routines into our
pipeline so as best to integrate these disparate
categories of information? A simple approach
would be to use a ‘greedy’ algorithm: choose the
best syntactic analysis, using all the available
syntactic data, then pick the best semantic in-
terpretation that can be derived from this win-
ning syntactic analysis, and so on. But this ap-
proach can throw out plausible interpretations:
semantic information often overrides statistical
information about frequency of syntactic con-
structions. Consider the following dialogue:

(2)
System: I keep my pig in a pigpen.
User: Where is the pen?

If the system’s grammar has two lexical en-
tries for pen, one meaning ‘writing pen’ and one
meaning ‘pigpen’, the user’s utterance will be
syntactically ambiguous. The intended inter-
pretation is clearly ‘pigpen’, but corpus statis-
tics are unlikely to support this; if anything,
writing pens will be more common in a general
corpus. (Even looking at syntactic construc-
tions in the recent context will not help, since
the word pen was not used in the first utter-
ance.) However, at a higher level, presupposi-
tion resolution information can give us the right
reading. The intended reading carries a pre-
supposition that there is a pigpen, which can
be successfully resolved, while the other read-
ing presupposes a writing pen, which will not
be found, and must be accommodated.

In summary, we need a way to combine in-
formation from different levels (syntactic and
semantic) and domains (world, user and lo-
cal). Two questions now arise. Firstly, when
disambiguating an utterance at some point in
the interpretation pipeline, how far should we
look ahead along the pipeline? Secondly, how
should we combine evaluations made at differ-
ent points in the pipeline using different types
of information?

3.1 Proposal for a disambiguation

procedure

As to the question of how far to look ahead:
we propose that we should always look to the
very end of the pipeline. For instance, when
performing syntactic disambiguation, we should

take each possible reading, and perform seman-
tic interpretation, presupposition resolution and
dialogue attachment. Of course, each of these
might themselves generate alternative possibili-
ties. The resulting space of possibilities is rather
like a conventional AI search graph, in which
leaves are complete interpretations of the ut-
terance. At each stage, the procedure which
generates the ambiguities at that stage can as-
sign each alternative a local score, using the
information appropriate to that stage. When
we have created the full set of complete inter-
pretations, we can combine these local scores
somehow (see Section 3.2) to create a global

score for each complete interpretation.

We now need to use these scores to decide on
the best interpretation. Local and global scores
provide only a heuristic measure of which in-
terpretation is best, so we can only use them
as a rough indicator of which is the best read-
ing. If one interpretation has a global score far
exceeding those of all other interpretations, we
can safely choose it. But if there are several al-
ternatives with roughly the same global scores,
we need to ask a clarification question, so that
the user can disambiguate overtly. The selec-
tion of an appropriate clarification question is
problematic in its own right, since we may be
trying to distinguish between several interpreta-
tions whose high global scores originate in differ-
ent stages of the pipeline. Section 3.3 discusses
this topic.

3.2 Combining information types

How do we combine local scores due to sta-
tistical parsing, presupposition resolution and
dialogue attachment? To date, we have con-
sidered two approaches. We first considered a
weighting formula. In this method, all local
scores are numerical, and the global score is a
weighted sum of the local scores, with weights
chosen so as to reflect the importance of differ-
ent sources of information. However, this fails
to capture potential interactions between differ-
ent information sources. We now use a condi-

tional formula—basically a simple procedural
algorithm. In this scheme, we can specify, for
instance, that a certain local score is only used
if there is a tie as regards some other local score.
Our general observation is that higher levels of
information tend to trump lower levels; for in-
stance, if there are two alternative interpreta-
tions of an utterance at the dialogue act level,
and only one of these is consistent with a co-



herent dialogue, then it shouldn’t matter if the
other interpretation scores more highly in the
syntactic or presupposition-resolution domains.
Section 4 discusses this algorithm further.

3.3 How to generate clarification

questions

A key component in a dialogue-based disam-
biguation system should be the ability to ask
the user for clarification. There are well-known
dialogue strategies for doing this; the con-
cept of a clarification subdialogue is well-
established as a dialogue structure—see, for ex-
ample, Schmitz (1997).

It seems that different clarification ques-
tions target ambiguities at different points in
the interpretation pipeline. At the syntac-
tic level, clarification questions tend to have a
multiple-choice structure, in which the alter-
native syntactic possibilities are disambiguated
by rephrasing. For instance:

(3)

User: Fruit flies like a banana.
System: Do you mean (1) ‘A banana is

liked by fruit flies,’ or (2) ‘Fruit
flies just as a banana does’?

At the presupposition resolution level, clarifi-
cation questions tend to take the form of wh-
questions. For instance:

(4)
User: The dog barked.
System: Which dog barked?

These questions are sometimes termed echo

questions (c.f. Ginzburg (1996)). They are
syntactically different from ordinary questions:
for instance, the wh element receives a certain
kind of stress, and interestingly, they can be
embedded inside questions:

(5)
User: Who did the dog chase?
System: Who did which dog chase?

Questions about dialogue act assignment are
much less common. Questions of this sort would
probably include meta-level questions such
as the following:

(6) System: Are you talking to me?

(7) System: Are you asking me, or telling me?

Recall from Section 3.1 that a clarification
question will be asked if the highest-ranked in-
terpretation is close enough in score to one or
more lower-ranked interpretations. What sort
of clarification question should we then gener-
ate?

Our key suggestion here is that we need to
nail ambiguities in the order they arise in the
interpretation pipeline. We do not want to ask
a question about an ambiguity at one stage in
the pipeline if there are still ambiguities re-
maining at an earlier stage. We therefore pro-
pose traversing the interpretation space a sec-
ond time for the interpretations to be clarified;
as soon as an ambiguity is generated, we should
ask a question to resolve it. If ambiguities still
remain after this question has been answered,
we continue to traverse the search space for the
remaining interpretations, and ask further clari-
fication questions about points further on in the
pipeline. For example, we might have three po-
tential interpretations A, B and C. If B and C

have the same syntactic analysis, but A’s anal-
ysis differs, we ask a multiple-choice question
about these two syntactic possibilities. If the
user answers that the syntax is that of B/C, we
need to look further in the pipeline. If we find
that B and C have a presupposition resolved in
different ways, we then ask an echo question to
nail this remaining ambiguity.

The ambiguities that we find on this second
pass can be thought of as those that we find to
be ambiguous in hindsight, in the light of pro-
cessing further on in the pipeline. Even though
we are asking a question about syntactic ambi-
guity, we have actually worked out one or more
full interpretations for each possibility. To be
helpful to the user, the system could perhaps be
configured to include information with a ‘paren-
thetical’ flavour in a clarification question, indi-
cating what subsequent interpretation decisions
follow as a corollary to the alternatives she is
currently being asked about. For example:

(8)

User: The fruit flies like a banana.
System: Do you mean (1) ‘The (fresh)

fruit (in the bowl) flies like a
banana,’ or (2) ‘The (mutant)
fruit flies (in the genetics lab)
like a banana’?

As described in section 5.1, we cannot be
sure that the system’s grammar will always be
sufficient to form a syntactically unambiguous
rephrasing such as The drosophila are fond of
a banana. In these cases, parenthetical anno-
tations of semantic information could be very
useful.



Parse Probability Attachment Saliency Presuppositions Accommodations Dialogue act

P1
P1.A1
P1.A2

P2 P2.A1

P3
P3.A1
P3.A2
P3.A3

...
...

...
...

...
...

...

Table 2: Structure for aggregation of utterance disambiguation data in Te Kaitito

4 Disambiguation in Te Kaitito

Te Kaitito provides a variety of sources for dis-
ambiguation data: a DRS representation of the
current discourse context, a saliency list of ref-
erents ranked by how recently they have been
mentioned, and records of recent utterances
and preferred parses. We also have a corpus
of sentences hand-annotated with their correct
parses.

As an utterance travels along Te Kaitito’s
processing pipeline, a disambiguation table

(See Table 2) is progressively filled with all the
information necessary for a disambiguation de-
cision. When the utterance reaches the end of
the pipeline, a disambiguation module uses this
information to make a decision—either selecting
an interpretation outright, or initiating genera-
tion of clarification questions if there is insuffi-
cient information for a clear decision.

The structure of the disambiguator is,
broadly speaking, an iterative pruning process
traversing the table from right to left. Each
column is consulted in turn and sufficiently im-
plausible parse/attachment combinations dis-
carded. If at any stage only a single interpre-
tation remains, it is chosen as the correct one;
otherwise the next column to the left is used
to prune the remaining parses. If multiple in-
terpretations remain after the final stage (the
stochastic grammar), clarification questions are
generated (see Section 5).

This model fits the observation, made in Sec-
tion 3.2, of prioritising information from higher
semantic levels: the lower levels are only con-
sulted as tie-breakers for the higher levels.

The exact mechanism for combining disam-
biguation is subject to some experimentation:
in particular, it is not clear that presupposi-
tional weight is always a more reliable indica-
tor than saliency. However, the self-contained
nature of the disambiguator lets us modify it
without affecting the rest of the system.

4.1 Syntactic disambiguation using

statistics

Probabilistic rule annotation using statistical
data is an established technique for resolv-
ing syntactic ambiguity (Manning and Schütze,
1999, Chapters 11 and 12). Augmenting a
context-free grammar with rule probabilities is
relatively straightforward; the application of
similar techniques to a Head-Driven Phrase
Structure Grammar such as that used in Te
Kaitito is a more complex issue (Brew, 1995).

We use the techniques discussed by
Toutanova et al. (2002) for stochastic HPSG
parsing: augmentation of the derivation trees
with probabilities in the manner of a proba-
bilistic CFG, and an expectation-maximization
technique on selected features of the derivation
tree.

To construct a stochastic grammar, we re-
quire a source of statistical data. In our case
this takes the form of an annotated treebank.
Using the LKB parser and the [incr tsdb()]
package2, we can parse a corpus of test sen-
tences and manually select preferred parses.
[incr tsdb()] stores the human annotator pref-
erences as first-class data, making it relatively
immune both to changes in the nature of the
statistics extracted and in the underlying gram-
mar.

4.1.1 Contextually augmented

probabilities

Commonly, probabilities in stochastic gram-
mars are static: they are inferred off-line from
a corpus and remain fixed thereafter. It would
clearly be desirable to adapt the probabilities
to the current dialogue context. Consider ex-

2[incr tsdb()] provides an integrated grammar devel-
opment environment with a range of facilities for diag-
nostics, evaluation and benchmarking (see Oepen (1999)
for details). Here we are mainly concerned with its facil-
ity for maintaining a database of test items, parses, and
human correctness annotations.



ample 1: If fruit flies like bananas follows hard
upon meat flies rather inelegantly and vegeta-
bles fly like a dream, then we would like to as-
sign greater weight to the fly-as-verb reading.
This can be done by treating the dialogue as an
additional corpus, albeit with different learning
parameters.

We propose augmenting the usual probability
of a rule or feature with another value repre-
senting its ‘weight’ in the immediately preced-
ing context. This value is then combined with
the corpus-derived probability to give the over-
all probability used in disambiguation.

The contextual ‘weight’ of a feature is simply
a counter which is incremented whenever the
feature appears in an utterance by the user or
the system. Heavy damping is applied at each
dialogue turn so that features which stop ap-
pearing in the context soon regain their base
probabilities. Careful tuning of the damping
factor will be necessary.

It is not at present clear how best to com-
bine the contextual weight of a feature with its
base probability. Our current proposal is simple
addition after scaling by an empirically tuned
factor, but further evaluation will be needed.

4.1.2 The user model

The distribution of grammatical features varies
with the speaker as well as with the context,
both in vocabulary and higher-level constructs.
Our dialogue system functions in a language
learning environment, where users are learners
of Māori. In this environment, there is even
greater variation between users’ idiolects, as
learners often have widely differing skill levels.

For this reason it makes sense to augment the
probabilistic model with per-user information.
Again, the dialogue itself is used as an ancillary
corpus, but in this case statistics are only ex-
tracted from the user’s utterances, not those of
the system. The results of this on-line learning
can then be combined with the corpus-derived
probabilities in the same way as the contextual
counts. Again, some damping is desirable. Per-
sonal usage patterns don’t change as fast as con-
versational topics, but they are subject to grad-
ual variation, particularly when the speaker is
learning a new language.

There are additional benefits to keeping track
of a learner’s usage patterns: they can be com-
pared with a corpus of sentences at the learner’s
intended level to find gaps in their knowledge of
a language. It may be useful to bias the sys-
tem’s generation system in favour of features

that a learner’s speech lacks, in order to give
them more exposure to constructs that they find
more difficult.

4.1.3 Question-answering and priming

In human conversation, even the most unlikely
parse can become plausible when primed by a
question with the appropriate syntactic struc-
ture. For example, a hugely improbable inter-
pretation of the sentence Matt cooks lunch can
be primed by prepending the question What do
matt cooks do when they get hungry in the mid-
dle of the day?. We would like to be able to
prime our system similarly.

This kind of priming can be incorporated in
similar fashion to the context and user mod-
els, using a very short-term skewing of feature
probabilities. When a question is asked, the
probabilities of its features are substantially in-
creased for the next dialogue turn only. In this
case, matt-as-adjective and cook-as-noun would
receive greater than normal weight.

This problem can also be considered at other
levels of processing: at a semantic level, Te
Kaitito will prefer the cook-as-noun interpreta-
tion if there are cooks in the current discourse
context. At a dialogue act level, the uncom-
mon interpretation can be preferred because it
is the only one which answers the question. One
advantage of incorporating this kind of priming
at the syntactic level is efficiency: with a large
grammar it might be necessary to prune less
likely parses before the semantic stage of pro-
cessing, even though this runs counter to our
disambiguation technique. In this case it’s vi-
tal to incorporate priming at the syntactic level,
or the correct parse may be removed before the
semantic and dialogue-act layers can perform
disambiguation.

4.2 Semantic disambiguation using

presupposition resolution

We have already described how our system uses
information about the presupposition resolution
process to generate preferences between inter-
pretations: see Knott and Vlugter (2003). Here
is a quick summary.

There are three possibilities to consider when
resolving a presupposition: we may find no an-
tecedents in the discourse context that match
the presupposition, we may find exactly one an-
tecedent that matches, or we may find more
than one antecedent. If we cannot find any dis-
course entities to bind a presupposition to we
can be generous and resolve this presupposition



by accommodating the information provided. If
there is exactly one possible binding the pre-
supposition is simply resolved. If there is more
than one possible binding then we add further
ambiguity to the intended meaning of an utter-
ance as each possible binding can be considered
a separate interpretation. After presupposition
resolution each interpretation has its presuppo-
sitions resolved either through binding to some
entity in the discourse context, or by accommo-
dating the content of the presupposition, and
the number of possible interpretations may have
increased.

In disambiguation through presupposition
resolution we keep to three principles. Firstly,
we prefer interpretations that resolve through
binding over those that resolve through accom-
modation. Secondly, when presuppositions are
resolved through binding we prefer those with
greater presuppositional content. Thirdly, we
prefer interpretations where presuppositions are
resolved to more salient entities in the discourse.

4.3 Dialogue act disambiguation

Dialogue act disambiguation is currently done
procedurally. As noted in Section 3.2, it seems
unlikely that a dispreferred dialogue act inter-
pretation could ever be redeemed by high local
scores on syntactic or presupposition-resolution
grounds. In the context of a question, an asser-
tion is checked to see if it can be interpreted as
an answer to the question. If not, it is consid-
ered to be a new assertion (with the question
being ignored). Note that it could be an an-
swer that the system cannot interpret as such,
because of some misunderstanding or the limi-
tations of matching questions and answers. In
the context of an ungrounded assertion, a ques-
tion is first considered as a possible clarification
question and then, if this fails, as a new query
(with implicit grounding of the previous asser-
tion). In dialogue act disambiguation we pre-
fer interpretations that answer a question over
those that ignore the question and assert new
information, and so on.

5 Clarification questions in Te
Kaitito

Te Kaitito currently generates two kinds of clar-
ification question. These will be described in
turn.

5.1 Multiple-choice questions

We generate all possible sentences realizing each
remaining candidate interpretation, and then

search for sentences that unambiguously present
one interpretation. Here is an example:

(9)

User: The dog chased the sheep.
System: Do you mean (1) ‘The sheep

were chased by the dog,’ or (2)
‘The sheep was chased by the
dog’?

There’s no guarantee that we will find such
a sentence for each interpretation. However,
we can take certain measures to improve the
chances of doing so. Firstly, we can adapt our
grammar to include devices for resolving com-
mon ambiguities. For instance, we can include
a lexical item you (by yourself), to unambigu-
ously signal a singular second-person pronoun.
Naturally we do not want to generate this term
except when we are nailing ambiguities. But if
we use the probabilistic grammar to rank alter-
native sentences when generating, and we en-
sure that special constructions are rare in the
test suite, we should ensure that they are only
used in clarification questions. Secondly, our
grammar is bilingual, so we can generate sen-
tences that realize an interpretation in another
language. For example:

(10)
User: Kia ora, e hoa mā.
System: Do you mean (1) ‘Hello friends,’

or (2) ‘Hello, O white friend’?

This also increases the likelihood of paraphrases
that successfully nail syntactic ambiguities.

5.2 Echo questions

We ask echo questions to resolve referential am-
biguities generated during presupposition reso-
lution. Example 4 demonstrates this. To be a
bit more useful, the system can also generate
multiple-choice alternatives:

(11)
User: The dog barked.
System: Which dog barked? The black

dog? Or the white dog?

Finally, if ambiguities are encountered during
the processing of questions, rather than produce
a nested echo-question, the system simply pro-
vides an answer to all of the questions the user
can be understood as asking.

(12)

User: Which dog chased the cat?
System: The black dog chased the white

cat. The white dog chased the
black cat.



6 Summary and further work

We have created a general framework within
which to combine dialogue information from dif-
ferent domains and semantic levels, for the pur-
pose of disambiguating user utterances in a dia-
logue system. We propose that disambiguation
information be roughly prioritised according to
its position in the processing pipeline: high-level
semantic information carries more weight than
low-level syntactic information. Clarification
questions, if required, are generated in increas-
ing order of semantic level. We also discuss a
technique for augmenting a stochastic grammar
with statistics drawn from the current dialogue
context and from a particular user’s dialogue
history, giving it a better chance of selecting
the correct parse in a given context.

The framework we describe is already in
place, but many of the variables in the pro-
cess (for example, the weighting and damping
factors used to augment the stochastic gram-
mar) still require some careful tuning. Fur-
ther testing may also expose unforeseen interac-
tions between levels, which may complicate the
current straightforward iterative pruning algo-
rithm; however, no changes to the framework
itself should be necessary.

References

Chris Brew. 1995. Stochastic HPSG. In Pro-
ceedings of EACL-95.

A Copestake and D Flickinger. 2000. An
open-source grammar development environ-
ment and broad-coverage English grammar
using HPSG. In Proceedings of LREC 2000,
Athens, Greece.

A Copestake, D Flickinger, I Sag, and C Pol-
lard. 1999. Minimal Recursion Semantics:
An introduction. Manuscript, CSLI, Stanford
University.

J Ginzburg. 1996. Interrogatives: Questions,
facts and dialogue. In S Lappin, editor, The
handbook of contemporary semantic theory,
pages 385–422. Blackwell, Oxford.

H Kamp, J van Genabith, and U Reyle. in
preparation. Discourse representation theory.
In Handbook of Philosophical Logic. Springer-
Verlag.

A Knott and P Vlugter. 2003. Syntactic dis-
ambiguation using presupposition resolution.
In Proceedings of the 4th Australasian Lan-
guage Technology Workshop (ALTW2003),
Melbourne.

A Knott and N Wright. 2003. A dialogue-based
knowledge authoring system for text genera-
tion. In AAAI Spring Symposium on Natural
Language Generation in Spoken and Written
Dialogue, Stanford, CA.

A Knott, I Bayard, S de Jager, L Smith, J Moor-
field, and R O’Keefe. 2002. Syntax and se-
mantics for sentence processing in English
and Māori. In Proceedings of the 2nd Aus-
tralasian Natural Language Processing Work-
shop, pages 33–40, Canberra, Australia.

A Knott, I Bayard, and P Vlugter. 2004. Multi-
agent human-machine dialogue: issues in di-
alogue management and referring expression
semantics. In Proceedings of the 8th Pa-
cific Rim Conference on Artificial Intelligence
(PRICAI 2004), Auckland.

Christopher D. Manning and Hinrich Schütze.
1999. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cam-
bridge, Massachusetts.

Wolfgang Menzel and Ingo Schröder. 1999. Er-
ror diagnosis for language learning systems.
ReCALL.

Stephan Oepen. 1999. [incr tsdb()] com-
petence and performance laboratory. user
and reference manual. http://citeseer.ist.psu.
edu/457852.html.

Birte Schmitz. 1997. Collaboration in auto-
matic dialogue interpreting. In Proceedings
of the Workshop “Collaboration, Cooperation
and Conflict in Dialogue Systems”, IJCAI-
97, pages 79–88.

Kristina Toutanova, Christopher D. Manning,
Stuart M. Shieber, Dan Flickinger, and
Stephan Oepen. 2002. Parse disambiguation
for a rich HPSG grammar. In First Work-
shop on Treebanks and Linguistic Theories
(TLT2002), pages 253–263.


