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Abstract 

Applying CCG to domains outside of 
linguistics could require different sets of 
combinators to be developed for each domain. 
The meta-grammar described in this paper 
aims to assist such development by enabling 
simple, succinct expression of both existing 
and new combinator definitions. It favours the 
development of an easily-configurable, one-
time-coded module that can perform CCG 
combinations for any combinator set of the 
researcher’s choosing. A preliminary 
implementation shows both the feasibility and 
potential of the meta-grammar. 

1 Introduction 

The merits of Combinatory Categorial Grammar 
(CCG) have been established via natural language 
parser implementations like that of Hockenmaier 
and Steedman (2002) and Clark and Curran (2004). 
But recent findings show that categorial grammars 
based on CCG also display promise in domains 
outside of linguistics (McMichael et al., 2004). 
Over the years, new combinators have been 
developed to extend the system of pure categorial 
grammar (Steedman 2003), but although the set of 
combinators for CCG seems to have stabilised, this 
same set may not necessarily be applicable to 
analyses in other domains. In fact, McMichael et 
al. introduce two combinators – functional 
application and modificational application, both 
defined in section 2.1 – that are not part of the 
existing set of CCG combinators. Additionally, 
functional application cannot even be cleanly 
defined via a traditional combinator pattern. It is 
partly this inability of the existing techniques to 
cleanly define new combinators that motivates the 
proposal of a meta-grammar for combinator 
specification. 
In this paper, we explain the motivations for and 
give a specification of the meta-grammar, along 
with complete examples of how it applies to new 
and existing combinators. Lastly, we examine the 
workings and potential of a preliminary 

implementation. The remainder of this section, 
however, presents a brief introduction to CCG. 

1.1 A Practical Introduction to CCG 

CCG operates by first assigning a syntactic 
category to each word in the sentence, as will be 
demonstrated in the proceeding example borrowed 
from Hockenmaier (2003).  At this point, the 
notation for describing categories should be 
observed.  Assuming the simplistic 
subject-verb-object (SVO) pattern for English, the 
phrase “buys shares” will form a complete 
sentence S if it is preceded by a noun phrase, and 
we write this as: 

buys shares ├ S\NP 

So the phrase “buys shares” can be thought of as a 
function that takes a noun phrase NP as an 
argument to its left and returns a sentence S. 
Furthermore, “buys” will form a S\NP if it is 
followed by a noun phrase, and this is denoted as: 

buys ├ (S\NP)/NP 

In doing this, we have eliminated the need for a 
separate verb category V, leaving us with the 
following category assignments: 

John ├ NP 

buys ├ (S\NP)/NP 

shares ├ NP 

Formally, a category may be either atomic (S, NP, 
etc) or complex (S\S, (S\NP)/NP), etc). Complex 
categories take the general form α/β or α\β, where 
α and β are themselves categories. 
Given the above category assignments, a 
derivation proceeds as follows: “buys” is combined 
with “shares” under the operation of forward 
application (the term forward referring to both the 
direction of the slash).  The phrase “buys shares” is 
combined with “John” under the operation of 
backward application.  The combinators 
(operators) that govern these two operations are 
defined as follows: 



X/Y  Y  ⇒>  X 
Y  X\Y  ⇒<  X 

where X and Y represent any category. Typically, 
a derivation is represented in the following 
manner: 

John

NP
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(S\NP)/NP
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NP
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which corresponds to the following tree: 
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Several other combinators are defined by 
Steedman (2000) for capturing long-range 
dependencies in the English and Dutch languages: 
coordination (Ф) type-raising (T), composition (B) 
and substitution (S). These combinator families are 
listed below: 

X  conj  X    ⇒<Ф> X 
X             ⇒>T Y/(Y\X) 
X             ⇒<T Y\(Y/X) 
X/Y  Y/Z      ⇒>B X/Z 
X/Y  Y\Z      ⇒>Bx X\Z 
Y\Z  X\Y      ⇒<B X\Z 
Y/Z  X\Y      ⇒<Bx X/Z 
(X/Y)/Z  Y/Z  ⇒>S X/Z 
(X/Y)\Z  Y\Z  ⇒>Sx X\Z 
Y\Z  (X\Y)\Z  ⇒<S X\Z 
Y/Z  (X\Y)/Z  ⇒<Sx X/Z 

The usage of some of these combinators is shown 
below, using example derivations taken from 
Steedman (2000) and Hockenmaier (2003). 
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For further reference on CCG, the reader is 
directed to Steedman (1996) and (2000). 

1.2 An Historical Note on CCG 

The slash notation seen in categories of CCG stems 
from that used in the early works on pure 
categorial grammar by Ajdukiewicz (1935), Bar-
Hillel (1953) and Lambek (1958). Steedman 
(1993) explains that he and Dowty refined these 
earlier notations, leading to the more consistent 
and readable style that is described in section 1.1. 
The only rules permitted by pure categorial 
grammar are forward and backward application. 
CCG extends this system with the above-listed 
rules, based on Curry and Feys’ combinators – a 
term coined in their 1958 work on combinatory 
logic, where they examined devices that operate on 
functions, irrespective of the number of arguments. 
The combinatory nature of CCG rules enables a 
transparent mapping between syntactic and 
semantic form, thus providing one of the major 
appeals of this grammar formalism. 

2 Motivations 

As can be seen in section 1.1, enumerating the 
entire set of combinators can be lengthy. Given 
that combinators in a family like {>B, >Bx, <B, 
<Bx} differ only by the direction of the slashes and 
order of the operands, it seems wasteful to present 
each one explicitly. A more compact 
representation is afforded by specifying only the 
pattern for >B, along with the transformations 
required to obtain the variations >Bx, <B and <Bx. 
The proposed meta-grammar provides a method 
for succinctly specifying these variations. 
Without recognising the similarity within 
combinator families, and even between combinator 
families, writing code to apply combinators can be 
laborious, error-prone and wasteful, unless these 
similarities are exploited for optimum code reuse. 
The implementation of this meta-grammar takes 
full advantage of intra- and inter-family 
similarities. 

2.1 New Domains 

Providing a meta-grammar by which to specify 
combinator families lends itself to a single-module 
implementation that can be easily configured to 
handle new combinators. This capability is 
important because, although the set of combinators 
for use in linguistics seems to have matured, there 



are other domains that stand to benefit from CCG 
analyses, but for which grammar development is 
still in its infancy. In particular, the authors are 
currently developing a generic parser capable of 
being configured to specific domains, including, 
but not limited to, NLP and situation assessment. 
Research into applying CCG to these domains is 
being assisted by an ability to perform rapid 
prototyping on their grammars. 
The two new combinators mentioned in the 
introduction – functional application (F) and 
modificational application (M) – are defined as 
follows: 

X/Y  Y        ⇒>F X 
Y  X\Y        ⇒<F X 
X/X  X        ⇒>M X 
X  X\X        ⇒<M X 

with the caveat that X≠Y. These combinators find 
use in the authors’ research in both English parsing 
and situation assessment. Note that >F and >M 
together cover all combinations possible under the 
traditional vanilla forward application rule >; 
similarly for <F and <M with <. It will suffice to 
say here that the reason for splitting the traditional 
rules into two was to correctly handle head 
inheritance while maintaining a simple 
mathematical model; further explanation is not 
within the scope of this paper1. The >F and <F 
combinators defined above would incorrectly be 
interpreted as the vanilla > and < combinators if it 
were not for the caveat. So this example not only 
demonstrates new combinators, but also highlights 
the shortcomings of the current methods for 
specifying combinators. The proposed meta-
grammar provides an elegant (caveat-free) solution 
to this problem. 
Another domain that is planned for investigation 
is geology. The general intent is to analyse vertical 
sequences of discrete sedimentary layers in a 
manner analogous to English parsing, where 
sequences of (discrete) words are analysed. 
Griffiths (1989) founded the precursor to this 
research by demonstrating that meaningful 
analyses could be performed on sedimentary 
sequences using a context-free grammar. He also 
speculated that context-sensitive analyses might be 
able to resolve some ambiguities, lending weight to 
the application of CCG, which is mildly context-
sensitive, to such a task. 

                                                      
1 The authors would like to credit the work of Geoff 

Jarrad in developing these two combinators. 

2.2 Converting Treebanks 

When employing a statistical parser, a suitable 
corpus of pre-parsed sentences is required for 
training the probabilities. However, altering the 
grammar through the addition or deletion of 
combinators (as is done when applying CCG to 
new domains) requires a new corpus to be marked-
up accordingly. This process typically requires 
converting the context-free derivation trees from 
the Penn Treebank (Marcus et al., 1993, 1994) to 
intermediate binary context-free trees and then 
finally to CCG trees. The second stage of 
conversion (binary CF to CCG) requires a 
technique referred to as inverse combination, 
where an unknown left or right category is 
determined given the result category. This 
contrasts to regular combination, where the 
unknown result is deduced from two known 
operands. There are two types of inverse 
combination: missing-left (when the right operand 
and result are known) and missing-right (when the 
left operand and result are known. Missing-left and 
missing-right scenarios are shown left and right 
respectively below. 

Cresult

Cright Cleft

Cresult

 

It will be shown in section 4.2 that a standard 
implementation of the meta-grammar can be made 
to perform these operations by merely permuting 
some of the configuration information passed to 
the module. 

2.3 Python Implementation 

The implementation described in this paper was 
coded in Python (Python Programming Language, 
2004). Python was chosen for its ability to aid 
rapid prototyping and for its ease of integration 
with much faster C code. Thus we hope to benefit 
from lower coding times and easier debugging, 
with the option to port to C and re-integrate any 
mature code that is deemed time-critical. 

3 The Meta-grammar 

This section details the meta-grammar that controls 
the specification of a CCG. The set of combinators 
are specified as a list of combinator templates, one 
template for each combinator family: 

COMBINATOR-SET := 



    COMBINATOR-TEMPLATE 1 
      … 
      … 
    COMBINATOR-TEMPLATE m 

Each combinator template defined separately, as 
well as any atomic variations referenced in the 
templates. These are both described below, and 
proceeded by some example templates. 
It is worth noting that this proposal focuses 
primarily on specifying combinators for the 
express purpose of performing combinations. The 
corresponding semantics (logical forms) may be 
associated with operands and the result, following 
from Steedman (2000). 

3.1 Specifying a Combinator Template 

A combinator template is specified as a tuple: 

COMBINATOR-TEMPLATE := 
  ( TYPE, 
    OPERAND-PATTERN-LIST, 
    RESULT-PATTERN, 
    PERMITTED-VARIATIONS ) 

where the entries in the tuple are defined as: 
TYPE: an identifier for the combinator that 
should be unique across all other combinator 
templates. Typically it is a single character; in 
section 1.1 we saw them as Ф, T, B and S. 
OPERAND-PATTERN-LIST: the ordered list of 

n operand patterns. Typically n=2  since most 
combinators are binary operations, although n=1  
for type-raising (T). The syntax for these patterns 
is given in section 3.2. 
RESULT-PATTERN: a pattern that specifies 
how to construct the resulting category from 
operand categories that successfully match the 
operand patterns. 
PERMITTED-VARIATIONS: as mentioned in 
section 2, only one pattern set is specified per 
family of combinators. Each variation in the family 
is specified as a tersely coded entry in this list. For 
instance, the composition family (B) would have 

permitted-variations = { >, >x, <, <x } . 

3.2 Specifying a Pattern 

The patterns specified in the combinator template 
must conform to the following EBNF syntax: 

<PATTERN> := <ATOMIC>| 
<COMPOUND> 

<ATOMIC> := <A>[‘e’|‘n’]<N> 
<A> := (‘A’|…|‘Z’)+ 
<N> := (‘0’|…|‘9’)+ 
<COMPOUND> := <LEFT> 

(<RIGHT>|‘[’<RIGHT>‘]’) 

<LEFT> := <ATOMIC>| 
‘(’<COMPOUND>‘)’ 

<RIGHT> := <SLASH><LEFT> 
<SLASH> := (‘\’|‘/’)<N> 

For simplicity of expression, we introduce the 

semantic requirement that an <A>n<N> pattern 
may only occur immediately after a slash. Alter-
natively, we could provide a completely context-
free grammar for patterns through a slightly less 

intuitive EBNF, by redefining <ATOMIC> and 
<RIGHT>: 

<ATOMIC> := <A>[‘e’]<N> 
<RIGHT> := <SLASH> 

(<LEFT>|<A>‘n’<N>) 

Some patterns that conform to this syntax 
include: 

X1 

Y1/ 2Y3 

(X 1/ 1Y1)\ 2X2 

Atomic patterns (patterns without slashes or 
brackets) are specified as alphanumeric strings 
which to allows for greater control over pattern 

specification. Any two atomic patterns (A’N’  and 
A”N” ) and the categories they match (C’  and C”  
respectively) are governed by the following 
constraints: 

A′=A″, N ′=N″ ⇒ C ′=C″ 
A′=A″, N ′≠N″ ⇒ C ′≠C″ 

As an example, suppose we want to match some 

category to the pattern ((X 1/ 1X1)/ 2X2)/ 3Y1, 

then the subcategory in the position of the first X1 

must be equal to the subcategory in the position of 

the second X1, but must be distinct from the 

subcategory in the position of the X2 (and any other 

X<N> that might have been in the pattern). The 

subcategories in the positions of X1, X1 and X2 are 

independent of the subcategory in the position of 

Y1. For example, this pattern would match the 

categories ((A/A)/B)/A , ((A/A)/B)/B  and 

((A/A)/B)/C , but not ((A/C)/B)/A  or 

((A/A)/A)/A . 

The presence of an ‘e’ in an atomic pattern 
indicates that the atomic pattern will only match 
with an atomic category. Thus Xe1 will match 

category A, but not A/A . 
The presence of an ‘n’ in an atomic pattern 
indicates that the atomic pattern will allow 
matching to an unlimited number of arguments, 
similar to the “$ convention” described in 



(Steedman 2000). A pattern X1/ 1Y
n

1 would match 

categories A/B , (A/B)/C , ((A/B)/C)/D , etc. 

Square brackets (if present) in a pattern surround 
an optional portion of that pattern. For example, 

the pattern Xe
1[/ 1Y

e
1]  would match categories A 

and A/B , but not (A/B)/C  or A/(B/C) . 

3.3 Specifying Variations 

Each combinator in a given family corresponds to 
exactly one variation in the permitted-variations 
list of that family’s combinator-template. Suppose 
we have operand and result patterns: 

TYPE = B 
OPERANDS = X1/ 1Y1, Y 1/ 2Z1 
RESULT   = X 1/ 3Z1 

then a > in the permitted-variations list 
corresponds to the combinator: 

X1/Y 1 Y 1/Z 1 ⇒>B X 1/Z 1 

That is, forward combination > does not alter slash 
directions or operand order. On the other hand, 

backward combination < reverses all slashes and 
operand order, so a < in the permitted-variations 
list would correspond to the combinator: 

Y1\Z 1 X 1\Y 1 ⇒<B X 1\Z 1 

Other atomic variations may be defined and used 

with either < or >. An atomic variation that is used 
in generating the composition (B) family is: 

x:{/ 2,/ 3} 

That is, the x  variant reverses the direction of slash 
2 and slash 3. The effect of atomic variations is 

successive. So a variation like <x  would have 
operands and all slashes reversed by <, but the x  
would reverse slashes 2 and 3 back to their original 
orientation (in this case, forward): 

Y1/Z 1 X 1\Y 1 ⇒<Bx X 1/Z 1 

Taking this one step further, suppose we invent an 

arbitrary variant i:{/ 3} , then the combinator 
corresponding to variant <xi  would be: 

Y1/Z 1 X 1\Y 1 ⇒<Bxi  X 1\Z 1 

Slash 3 has been reversed once by <, again by x  
and again by i , giving an overall effect of a single 
reversal. 

3.4 Some Example Templates 

This section is a simple demonstration of how the 
above-described meta-grammar can be used to 
specify both existing (type-raising, composition) 
and new (functional application, modificational 
application) combinators. 

3.4.1 Type Raising 

TYPE = T 
OPERANDS = X1 
RESULT = Y 1/ 1(Y 1\ 2X1) 
VARIATIONS = {>,<} 

X1 ⇒>T Y 1/(Y 1\X 1) 
X1 ⇒<T Y 1\(Y 1/X 1) 

3.4.2 Composition 

Note that this template specifies general 
composition (Bn). 

TYPE = B 
OPERANDS = X1/ 1Y1, Y 1/ 2Z

n
1 

RESULT = X 1/ 3Z
n

1 
VARIATIONS = {>,>x,<,<x} 

X1/Y 1 Y 1/Z
n

1 ⇒>B X 1/Z
n

1 

X1/Y 1 Y 1\Z
n

1 ⇒>Bx X 1\Z
n

1 

Y1\Z
n

1 X 1\Y 1 ⇒<B X 1\Z
n

1 
Y1/Z

n
1 X 1\Y 1 ⇒<Bx X 1/Z

n
1 

3.4.3 Functional Application 

TYPE = F 
OPERANDS = X1/ 1X2, X 2 
RESULT = X 1 
VARIATIONS = {>,<} 

X1/X 2 X 2 ⇒>F X 1 

X2 X 1\X 2 ⇒>F X 1 

3.4.4 Modificational Application 

TYPE = M 
OPERANDS = X1/ 1X1, X 1 
RESULT = X 1 
VARIATIONS = {>,<} 

X1/X 1 X 1 ⇒>F X 1 

X1 X 1\X 1 ⇒>F X 1 

4 Using the Implementation 

A prototype module has been developed in Python 
to implement the meta-grammar described in this 
paper. The module can be thought of as a factory 
which takes a combinator-set conforming to the 



definition in section 3 and returns a single 

function, combine() . 

COMBINE
FACTORY

combinator
templates

combine()
function

fn
 

The combine()  function takes any number of 

operand categories as arguments and returns a list 
of (result-category, combinator) tuples that 
corresponds to all possible categories that can be 
derived from the input categories. 

4.1 Combination 

As an example, let us consider the module when 
configured by the type-raising and composition 
combinator templates given in sections 3.1 and 3.2. 

The input to the combine()  function is a 

sequence of operand categories, and the output is a 
list of possible resulting categories and their 
corresponding combinators. 

Suppose the input is a pair of categories, A/B  
and B\C . Type-raising is immediately discounted 
by the function because it is unary and thus cannot 
operate on a pair of categories. Consequently, the 
function only considers the composition (B) 
combinators. The function attempts to match the 

first category, A/B , with the first operand pattern, 
X1/ 1Y1, and the second category, B\C , with the 
second operand pattern, Y1/ 2Z

n
1, ignoring slash 

directions for the moment. This match is 
successful, and results in a match dictionary of 

{X 1:A, Y 1:B, Z n
1:C} . The slashes are then 

found to match those required for forward crossing 

(>x ) composition {s 1:/, s 2:\} , but not for 

vanilla forward composition {s 1:/, s 2:/} . 

From these matches, the result can be built: 

X1\Z
n

1:A\C . To attempt the backwards 
combinations, the function then tries to match the 
input categories to the reversed sequence of 

operand patterns, i.e. A/B  with Y1/ 2Z
n

1 and B\C  
with X1/ 1Y1. This attempt fails because Y1=A in 
the first category, while Y1=C in the second 
category. So for the input A/B  B\C , the output is a 
single category-combinator pair: (A\C >Bx) . 

If the input were A/B  C, the output would be an 
empty list since the second category C will not 
match the structure of either of the operand 
patterns. 

Suppose now the input is a single category A. 
The composition combinators can be immediately 
discounted since they require two operands. 
However, it does match the single operand pattern 
for the type raising combinator, giving match 

dictionary {X 1:A} . This conforms to both the 
forward and backward type-raising, so the function 

would output a pair list {(*/(*\A) >T) , 

(*\(*/A) <T)} , where the *  character 
indicates that there was no match for Y1 in the 

input. The handling of these wildcards rests with 
the client software. 

4.2 Inverse Combination 

A very useful property of the meta-grammar and 
its associated implementation is that it can be 
configured to deduce a child category given the 
derived category and the other child/children. A 
process we term inverse combination. 
Consider the case of a binary combinator with 
pattern: 

OPERANDS = A B 
RESULT   =     C 
VARIATIONS = {>*,<*} 

where A, B, C are pattern placeholders ( – they are 
obviously not valid patterns themselves), >*  
represents some number of forward variations and 

<*  represents some number of backward 
variations. Now suppose we know the left and 
result categories (cA and cC), and wish to 
enumerate all valid right categories (cB) – the 
missing-right scenario. This is achieved via a two-
step process, involving the instantiation of two 

combine()  functions: 

OPERANDS = A C 
RESULT   =     B 
VARIATIONS = {>*} 
    ↓ 
[COMBINE FACTORY] 
    ↓ 
combine 1() 

OPERANDS = C A 
RESULT   =     B 
VARIATIONS = {<*} 
    ↓ 
[COMBINE FACTORY] 
    ↓ 
combine 2() 

Simple addition of the two returned lists obtains 
the desired result: 

combine 1(c A,c C) + combine 2(c A,c C) 



This works because combine 1()  returns the list 
of cB’s that result from valid matches of A:c A, 

C:c C. combine 2()  also matches A:c A, C:c C, 

but its operation is a little less obvious: because 

combine 2()  only considers backward 

combinations, it always reverses the order of its 

operands cA and cC, so A is still compared with cA, 

and C with cC. 

Inverse combination for the missing-left scenario 
can be performed similarly, so in the interest of 
brevity its detail is omitted. 
While the above approach may seem awkward, 
keep in mind that no changes are required to the 
meta-grammar definition or to the 
implementation’s code base. So inverse 
combination is obtained for free. 

5 Conclusion 

We have defined a meta-grammar for specifying 
complete families of CCG combinators. This meta-
grammar covers existing combinators, but more 
importantly, it provides a guide for specifying and 
using new combinators. A brief look at a 
preliminary implementation reveals that the meta-
grammar is indeed practical, and lends itself to 
powerful exploitation. 
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