
Representing and Rendering Linguistic Paradigms

David Penton and Steven Bird
Department of Computer Science and Software Engineering

The University of Melbourne, Victoria 3010, Australia
{djpenton,sb}@csse.unimelb.edu.au

Abstract

Linguistic forms are inherently multi-dimensional.
They exhibit a variety of phonological, orthographic,
morphosyntactic, semantic and pragmatic properties.
Accordingly, linguistic analysis involves multi-
dimensional exploration, a process in which the same
collection of forms is laid out in many ways until clear
patterns emerge. Equally, language documentation
usually contains tabulations of linguistic forms to
illustrate systematic patterns and variations. In
all such cases, multi-dimensional data is projected
onto a two-dimensional table known as a linguistic
paradigm, the most widespread format for linguistic
data presentation. In this paper we develop an XML
data model for linguistic paradigms, and show how XSL
transforms can render them. We describe a high-level
interface which gives linguists flexible, high-level
control of paradigm layout. The work provides a simple,
general, and extensible model for the preservation and
access of linguistic data.

1 Introduction

A linguistic paradigm is any kind of rational tabu-
lation of linguistic forms, such as phrases, words,
or phonemes, intended to illustrate contrasts and
systematic variation (Bird, 1999). A characteristic
property of paradigms is that interchanging entire
rows or columns does not change the interpretation
of the information. We view paradigms as a two-
dimensional arrangement of elements and attributes,
with optional row and column labels. An exam-
ple of a paradigm for the German definite article is
shown in Figure 1, with the labelling of number and
gender at the top, and case on the left.

This paper describes a relational data model for
linguistic paradigms, together with an XML based
approach for representing and rendering them. An
XSLT implementation provides proof of concept.1

This work presents a simple and general model for

1The implementation is available fromhttp:
//www.csse.unimelb.edu.au/research/lt/
projects/paradigms/

Figure 1: Paradigm for German definite article
(Finegan, 1999, 60)

the preservation and access of linguistic paradigms,
and can generate an extensive range of useful visu-
alisations.

This paper is organised as follows. In§2 we dis-
cuss the existing computational models in linguistic
paradigms and the lack of an existing formalism. In
§3 we discuss the data model, while§4 and§5 we
provide an example of how to generate and visualise
a linguistic paradigm. In§6 we discuss the query
engine implementation and motivate each opera-
tion. In §7 we describe the transformation of the
paradigm data into an XHTML presentation form.
Finally, §8 discusses the significance of the work
and outlines several areas for further investigation.

2 Background

Traditionally, there have been two sources for com-
putational representations for linguistic paradigms,
descriptive linguistic tools and technologies for lan-
guages having complex morphology. There has
been little formal work in either area concerning
the best form for this linguistic data type. Here we
examine some of the more widely-used models and
their drawbacks.

Of the descriptive linguistic tools, perhaps the
foremost are Shoebox2 and CHILDES.3 Shoebox
is an interlinear text editor popular among field
linguists for analysing linguistic transcripts. The
underlying model is an attribute value set for each

2http://www.sil.org/computing/shoebox/
3http://childes.psy.cmu.edu/

Tag Value Description
\id 1612 identifier (used for hyperlinks)
\w mbhu orthographic form
\t LDH tone transcription
\p n part of speech
\pl me- plural prefix
\cl 9/6 noun class (singular/plural)
\en dog English gloss
\fr chien French gloss

Figure 2: Shoebox File Format, Adapted for Lin-
guistic Paradigms (Bird, 1997)

entry, as shown in Figure 2. In the context of para-
digms, each element corresponds to a cell in a table,
and Shoebox can generate simple tabulated listings
of forms which constitute a one-dimensional para-
digm. The CHILDES CLAN tool supports tran-
scription and analysis of conversation, and is widely
used by psycholinguists in their study of child lan-
guage acquisition. It has good search functional-
ity that permits the generation of tabular reports.
Despite their ability to generate simple paradigm-
like reports, these systems do not provide an inter-
face for generating arbitrary paradigms, nor do they
permit paradigms to be saved in a format which per-
mits reuse.

Outside purely linguistic description, work
on computational morphology usually requires
paradigms to be set up. For instance, Finnish and
Romanian have such a large number of productive
morphological processes it is impractical to
list every form in the lexicon. Instead, regular
derivational and inflectional processes are described
using a formal system (such as a finite-state
transducer). Groups of processes which apply
to the same class of lexical items are sometimes
referred to as a paradigm (e.g. (Tufis, 1989; Oflazer
et al., 2001)). Unlike the descriptive viewpoint, in
which a paradigm is a tabulation, here a paradigm is
effectively treated as executable code which might
be used to generate such tabulations. However, we
are neutral on this issue since both viewpoints can
be reconciled by treating a paradigm as a relation,
as we do in§3.

3 Data Model

Linguistic paradigms associate linguistic forms with
linguistic categories. For instance, the German def-
inite article paradigm in Figure 1 categorises the
form den as either masculine singular accusative
or as dative plural. Systematic changes in layout,
such as interchanging rows and columns, or flipping
axes, have no affect on the associations between

D1 D2 D3 D0

gender number casecontent
masc sg nom der
masc sg acc den
masc sg gen des
masc sg dat dem
masc pl nom die
masc pl acc die
masc pl gen der
masc pl dat den
fem sg nom die
fem sg acc die
fem sg gen der
fem sg dat der
fem pl nom die
fem pl acc die
fem pl gen der
fem pl dat den
neut sg nom das
neut sg acc das
neut sg gen des
neut sg dat dem
neut pl nom die
neut pl acc die
neut pl gen der
neut pl dat den

Figure 3: Function for the German Paradigm

forms and categories. Accordingly, a paradigm is a
function that maps a vector of properties to content,
as follows:

f : 〈masc, sg, acc〉 7→ den

Generalising, letD0 . . . Dn be a set of linguistic
properties (or domains). Then a paradigm is a func-
tion:

f : D1 × · · · × Dn → D0

Let D1 = {masc, fem, neut}, D2 = {sg, pl},
and D3 = {nom, acc, gen, dat}. Also, let D0 =
{der, die, das, . . .}. The functional representation of
the German paradigm is shown in Figure 3.

Observe that the original paradigm display in Fig-
ure 1 is a compact view of this table. It shows
the domain values just once, and dispenses with the
gender property for the plural forms.

Now, the above functional representation in Fig-
ure 1 is just a relational table with schema German-
Paradigm (gender, number, case, content). We
can use domain relational calculus to extract the
columns of the original paradigm for display, e.g.:

{s | t ∈ GermanParadigm∧ t[number] = ‘sg’

∧ t[gender] = ‘masc’∧ t[case] = s[case]

∧ t[content] = s[content]}

= {〈nom, der〉 , 〈acc, den〉 , 〈gen, des〉 , 〈dat, dem〉}

The same query is expressed in SQL as follows:

SELECT case, content
FROM GermanParadigm
WHERE number = "sg"
AND gender = "masc".

nom, der
acc, den
gen, des
dat, dem

Standard XML technologies provide a more con-
venient way to map from this abstract representation
to a range of visualisations. The relational table
representation of a paradigm in XML is as follows:

<paradigm>
<form>
<attribute name="gender" value="masc"/>
<attribute name="number" value="sg"/>
<attribute name="case" value="nom"/>
<attribute name="content" value="der"/>

</form>
...

</paradigm>

XSL transforms provide a method to render this
material into XHTML or into some other presenta-
tional markup language for delivery to users. Using
this approach we will accomplish a round-trip, from
existing visualisations to the abstract model dis-
cussed here, then back to visualisations. The next
two sections describe this process in more detail.

4 Generating Paradigms
This section provides an overview of the steps
required to produce a paradigm of possessive
pronouns in Anejom̃, an Austronesian language of
Vanuatu. The source data is from (Lynch, 1998).
The process of generating paradigms is the same
for paradigms that are more complicated, so the
simplified Anejom̃ paradigm provides a helpful
introduction. First there is a simple examination of
the paradigm structure which motivates the choice
of model for the paradigm. Then, by investigating
an example query and looking at how it is processed
and presented, the intricacies and obstacles to an
effective model are evident. This leads onto the
discussion in§6 and §7 which provides the finer
details of the implementation and presents more
elaborate examples in order to reveal the strengths
and weaknesses of the model.

Figure 4 shows the architecture of the system.
The processing pipeline has three components: an

Figure 4: Architecture of System

Figure 5: Anejom̃ Possessive Pronouns (Lynch
1998:106) - Scanned Version

XML model, a query engine, and a presentation
engine.

Figure 5 shows a visualisation of a paradigm for
Anejom̃. It displays suffix morphemes for posses-
sive pronouns for different combinations of number
and person. Each cell is characterised by its content
and its attributes. For instance, the top right cell
has content-n, a ‘number’ attribute whose value is
‘singular’, and a ‘person’ attribute whose value is
‘3’. Each attribute has a domain of possible values.
For example, the domain of ‘number’ is ‘singular’,
‘dual’, ‘trial’ and ‘plural’. The content is likewise
a domain, having values such as ‘-jau’ and ‘-mrau’.
Figure 6 shows the XML model for Anejom̃. The
attributes and their domains make up the first sec-
tion, while the cells – the correspondences between
content and attribute values, make up the second
section.

The XML model provides a representation for the
paradigm; the remainder of this section describes
a plain text query language for generating different
presentations from that model. The plain text query
maps to an XML based representation. Then a XSL
transform performs the underlying operations on the

<?xml version="1.0" encoding="UTF-8"?>
<document>

<attributes>
<name name="person">

<value value="1.INC"/>
<value value="1.EXC"/>
<value value="2"/>
<value value="3"/>

</name>
<name name="number">

<value value="singular"/>
..

<value value="plural"/>
</name>
<name name="content">

<value value="-"/>
<value value="-jau"/>
..
<value value="-ra"/>

</name>
</attributes>

<paradigm>
<form>

<attribute name="person" value="1.INC"/>
<attribute name="number" value="singular"/>
<attribute name="content" value="-"/>

</form>
<form>

<attribute name="person" value="1.INC"/>
<attribute name="number" value="dual"/>
<attribute name="content" value="-jau"/>

</form>
..
<form>

<attribute name="person" value="3"/>
<attribute name="number" value="plural"/>
<attribute name="content" value="-ra"/>

</form>
</paradigm>

</document>

Figure 6: XML Model of Anejom̃ Possessive Pro-
nouns

XML model of the paradigm. Here is an exam-
ple. The Query 1 produces the visualisation of Fig-
ure 7 from the XML model of Figure 6. Trans-
lation 1 shows the full query. The table operator
takes three arguments, the constraint applied to the
vertical axis, the constraint applied to the horizontal
axis, and the operation applied in each cell. The
domain operation presents a list of all the values in
a given domain. Note that the domain for the third
argument of a table operation is different for each
cell and determined by the values on the vertical and
horizontal axes. Therefore Figure 7 shows a table
with person and number as axes and content in the
cells.

Query 1: table(person, number, content)

Translation 1: table(domain(person), domain(
number), domain(content))

1.INC 1.EXC 2 3
singular - -k -m -n
dual -jau -mrau -mirau -rau
trial -taj -mtaj -mitaj -ttaj
plural -ja -ma -mia -ra

Figure 7: Anejom̃ Possessive Pronouns: Table -
Reproduced Visualisation

1.INC singular -
dual -jau
trial -taj
plural -ja

1.EXC singular -k
dual -mrau
trial -mtaj
plural -ma

2 singular -m
dual -mirau
trial -mitaj
plural -mia

3 singular -n
dual -rau
trial -ttaj
plural -ra

Figure 8: Anejom̃ Possessive Pronouns - Hierarchy
induced by query

The model supports multiple visualisations of the
data. For example, Query 2 produces a presenta-
tion of the XML model in a tree-like structure. In
Query 2 the shorthand ‘/’ symbol represents the
hierarchy operation shown in Translation 2. The
hierarchy operator takes two arguments, the con-
straint that forms a list and the operation applied to
each element of the list. This produces the visu-
alisation of Figure 8. Nesting table and hierarchy
operations allows presentation of paradigms that are
more complicated and n-dimensional.

Query 2: person/number/content

Translation 2: hierarchy(domain(person), hier-
archy(domain(number), domain(content)))

5 Realising Paradigms
This section details the implementation responsible
for presenting queries, using our running example.
First, a PHP script maps the textual query represen-
tation to the equivalent XML representation shown
in Figure 9. Then the ‘logical’ transform runs the
query on the underlying XML model of the Anejom̃
paradigm (See Figure 6). Finally, the ‘presenta-
tional’ transform generates an XHTML presentation
of that paradigm. Both transforms are written using
XSLT.

<?xml version="1.0"?>
<document>

<parse-tree>
<operator opcode="table" instruction="1">

<operand type="domain"
arg="horizontal">person</operand>

<operand type="domain"
arg="vertical">number</operand>

<operand type="domain"
arg="cell">content</operand>

</operator>
</parse-tree>

</document>

Figure 9: XML Version of Query 1

The logical transform generates an intermediate
representation from the XML query and the XML
source model. The XSLT processor performs a
depth first traversal of the query expression. For
example, in Query 1 control starts at the table oper-
ation. The table operation requires calculating the
domain of person and number before it can gener-
ate the cells. The domain operation generates the
output tree of Figure 10 with a node for each value
in its domain. The processor generates nodes 1INC,
1EXC, 2 and 3 for person. It then places the forms
from the source tree that match the domain value
under the corresponding output node.

When processing the table operation the XSLT
processor searches the output trees of the vertical
and horizontal branches for child nodes. The XSLT
processor generates a cell for each combination
of vertical horizontal child pairs. The combined
set of nodes for each cell form the domain of the
third argument. In the example, the first cell of the
paradigm has the following mapping:

vertical: singular{-, -k, -m. -n}
horizontal: 1.INC{-, -jau, -taj, -ja}
cell(1,1): {-}

<form>
<attribute name="person" value="1.INC"/>
<attribute name="number" value="singular"/>
<attribute name="content" value="-"/>

</form>

The query domain(content) in cell (1,1) produces
a single node with a value ‘-’. The extended XML
output of the sheet is shown in Figure 10. At each
node the XSLT processor tags the number of leaves
and maximum depth of the tree which simplifies the
presentation logic.

The presentational transform renders the
intermediate representation into XHTML for
display on web browsers. It traverses the

<?xml version="1.0"?>
<document><operator optype="table">

<vertical leaf-depth="1" leaves="4">
<operator optype="domain" root-depth="1"

leaf-depth="1" leaves="4" direction="top-to-b.">
<node ..>

<att><html-att. element-name="th"/></att>
<forms>

<form>
<att. name="person" value="1.INC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-"/>

</form>
<form>

<att. name="person" value="1.EXC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-k"/>

</form>
<form>

<att. name="person" value="2"/>
<att. name="number" value="singular"/>
<att. name="content" value="-m"/>

</form>
<form>

<att. name="person" value="3"/>
<att. name="number" value="singular"/>
<att. name="content" value="-n"/>

</form>
</forms>

</node> . <node heading="plural" ../>
</operator>

</vertical>
<horizontal leaf-depth="1" leaves="4">

<operator optype="domain" root-depth="1"
leaf-depth="1" leaves="4" direction="left-to-r.">

<node heading="1.INC" ..>
<forms>

<form>
<att. name="person" value="1.INC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-"/>

</form>
<form>

<att. name="person" value="1.INC"/>
<att. name="number" value="dual"/>
<att. name="content" value="-jau"/>

</form>
<form>

<att. name="person" value="1.INC"/>
<att. name="number" value="trial"/>
<att. name="content" value="-taj"/>

</form>
<form>

<att. name="person" value="1.INC"/>
<att. name="number" value="plural"/>
<att. name="content" value="-ja"/>

</form>
</forms>

</node> . <node heading="3" ../>
</operator>

</horizontal>
<cells>

<row>
<column>

<operator optype="domain" root-depth="1"
leaf-depth="1" leaves="1" direction="left-to-r.">

<node heading="-" ..>
<forms>
<form>
<att. name="person" value="1.INC"/>
<att. name="number" value="singular"/>
<att. name="content" value="-"/>

</form>
</forms>

</node>
</operator>

</column><column>..</column>
</row><row>..</row>

</cells>
</operator></document>

Figure 10: XML output from Query 1. The forms
elements are only relevant in the horizontal and ver-
tical nodes during processing. The common form
element becomes the form element for the cell.

intermediate representation depth-first from
the root. The XSLT document handles three classes
of node; text leaves (node), text nodes with children
(domains) and arrays of text nodes with children
(tables). It must handle the following cases for each
node; where the node is the contents of another
node; and where the orientation of the node is
vertical or horizontal. The next section provides
further detail of how the query engine presents
paradigms.

6 Operations
This section elaborates the domain, hierarchy and
table operations, showing how they describe the
presentation of a wide variety of linguistic para-
digms. We also provide correspondences with rela-
tional queries:

Query 3: person

Translation 3: domain(person)
The SQL equivalent of Translation 3 is as follows:

SELECT person FROM paradigm

person
1.INC

1.EXC

2
3

Query 4: person/number

Translation 4: hierarchy (domain(person),
domain (number))

SELECT * FROM
(
SELECT person FROM paradigm

OUTER JOIN
SELECT number FROM paradigm

);

person number
1.inc singular

dual
trial
plural

1.exc singular
dual

. .

. .

Query 5: table(person, number, content)

Translation 5: table(domain (person), domain (
number), domain (content))

Qv = SELECT person FROM paradigm;
Qh = SELECT number FROM paradigm;
Qd = Qv OUTER JOIN Qh OUTER JOIN paradigm;
Qc = SELECT content FROM Qd;

The domain and hierarchy queries have
straightforward mappings to SQL as shown for
Translation 3 and Translation 4. The interactions
of the table operation are complex, especially
when looking at the query that produces the cells.
To build the table the parser generates the axes
using the query for the vertical and horizontal
axes with a direct mapping of the queries from the
first two arguments as shown in Translation 5. In
this case, it is the queries for domain(person) and
domain(number) that produce the desired SQL. A
projection of the vertical and horizontal values (Qv
andQc) form the domain (Qd) for each of the cells
(Qc). Any query on the cells applies only to this
new domain (Qd). The result of the queryQc is a
list of values which fill the table from the top left
corner.

Figure 11: French concord (Crowley, 1992, 322)

This covers the simple case where the paradigm
has just three-dimensions. There are however,
paradigms that have many more dimensions. The
French concord of Figure 11 has five dimensions
and provides a good source for more complicated
queries. Consider the following two queries:

Query 6: table (gender, number, language/phrase)

Translation 6: table(domain(gender), domain(
number), domain(language/phrase))

Qv = SELECT gender FROM paradigm
Qh = SELECT number FROM paradigm
Qd = Qv OUTER JOIN Qh OUTER JOIN paradigm
Qc =

SELECT * FROM (
SELECT language FROM Qd
OUTER JOIN
SELECT phrase FROM Qd

);

Query 7: table(gender, number, language)

Translation 7: table(domain(gender), domain(
number), domain(language))

Qd = paradigm
Qc =
SELECT * FROM (

SELECT language FROM Qd
OUTER JOIN
SELECT phrase FROM Qd

);

The difference in SQL for the cells between these
two queries is the domainQd. This represents
the context for the query, its treatment is system-
atic throughout the XSLT logic allowing nesting of
queries. Query 8 and Query 9 show queries that
produce two different structures for the French lan-
guage data. Using combinations of domain, hier-
archy and table operation it is possible to generate
almost all presentation layouts.

Query 8: table(gender/number, case/language,
phrase)

Translation 8: table(hierarchy(domain(gender
), domain(number)), hierarchy(domain(case),
domain(language)), domain(phrase))

Query 9: table(gender, case, table (number, lan-
guage, phrase))

Translation 9: table(domain(gender), domain(
case), table(domain(number), domain(language
), domain(phrase))

7 Presentation
This section describes the implementation of the
presentation engine. This is the most complex com-
ponent in the system; it produces XHTML from the
underlying XML representation. The XSL trans-
form does the processing with each operation act-
ing as event. The domain operation is the simplest
operation. It handles three distinct cases; one case
for producing a list of values; one for producing a
horizontal table; and one for producing a vertical
table. The processing produces the following code
for each:

Row:
<tr><td>Item 1</td><td>Item 2</td></tr>

Column:
<tr><td>Item 1</td></tr>
<tr><td>Item 2</td></tr>

Space separated list:
Item 1 Item 2

XSLT recursion solves the more difficult problem
of constructing a hierarchy. The example of Table 1

Item 11 Item 12
Item 21 Item 22 Item 23 Item 24

Table 1: Horizontal hierarchy of items.

Item 11 Item 21
Item 22

Item 21 Item 23
Item 24

Table 2: Vertical hierarchy of items.

is straightforward; each node has width equal to the
number of its children (set with the colspan prop-
erty). When the hierarchy is root, each level is a row
with control grounded at the root. Control must be
grounded at the root to avoid parts of the tree end-
ing up in different rows. In Table 1 this equates to
‘Item 11’ and ‘Item 12’ forming one row and ‘Item
21’, ‘Item 22’, ‘Item 23’ and ‘Item 24’ forming the
second row.

The same is true for the vertical realisation: the
root node controls the generation of each row. How-
ever, in this case, there is a need for a policy for
when to generate XHTML nodes. The problem is
the XHTML language has one nesting of row and
column yet two directions of spanning cells. Thus,
in Table 2, ‘Item 11’ produces a node in row one
but not row two and ‘Item 21’ produces a node in
row three but not row four. This causes serious
difficulties for any program written in a functional
language. The solution is an intricate variable pass-
ing procedure where the generation of each label
depends on whether it is the first node in the row.
When it is first the label forms a cell with the rows-
pan property equal to the number of children in the
hierarchy.

The generation of tables comes in three parts; the
generation of the vertical axis; the horizontal axis
and the cells. The XSL transform leaves the top-left
square of the paradigm blank to avoid connection
ambiguity problems. The generation of the hori-
zontal axis is the same as when the table did not
exist, albeit appropriately shifted by the depth of the
vertical axis. The table operator iterates over each
row generating first the vertical heading for that row
then the cells for that row. This maps to the XHTML
design of the table where the declaration of the rows
comes before the columns.

The XSL transform treats operators as either con-
trollers or fillers. As controller, the operator has
responsibility for generating XHTML table and row
tags. As filler, the operator just has responsibil-
ity for generating content. The nature of different
orientations require different code for vertical and

horizontal orientations. When supported this allows
integration and presentation of arbitrary commands.
In fact this XSLT framework can display any query
that used operations from§6.

8 Conclusion

This paper describes an XML model for linguistic
paradigms, including a query language and
implementation, along with a model for generating
presentations and an implementation. This work
provides a flexible and extensible representation
for storing multidimensional linguistic paradigms;
and a simple yet powerful method for accessing
and analysing stored data. This model allows the
easy manipulation of paradigm structure, and easy
presentation of systematic patterns and variations.
We believe that the XML representation will be
useful for archiving linguistic paradigms and for
the interchange of paradigms between programs.
We also believe the presentation system supports
multidimensional exploration of complex linguistic
datasets, a linguistic version of what is known in
the database world as online analytical processing
(OLAP).

In the future, we plan to investigate the following:
ordering paradigm content; generating paradigms
from interlinear text; and investigating a multi-table
model. Ordering the cells of a paradigm is an
issue because it complicates the axes, which then
require the repetition of headings. The second
line of enquiry is the generation and integration
of paradigm presentation into interlinear text
systems, which requires a level of machine learning
combined with an understanding of how to integrate
different levels of linguistic description. The other
issue is how to represent some of the relationships
within paradigms such as the phonetic characters
for a vowel and its height (eg.ǫ is a high vowel).
We believe that the optimum solution for some of
these problems is a multi-table model.

Acknowledgements

This paper extends earlier work by (Penton et
al., 2004). This research has been supported by
the National Science Foundation grant number
0317826Querying Linguistic Databases.

References

Steven Bird. 1997. A lexical database tool for
quantitative phonological research. InProceed-
ings of the Third Meeting of the ACL Spe-
cial Interest Group in Computational Phonology,
pages 33–39.

Steven Bird. 1999. Multidimensional exploration
of online linguistic field data. In Pius Tamanji,
Masako Hirotani, and Nancy Hall, editors,
Proceedings of the 29th Annual Meeting of
the Northeast Linguistics Society, pages 33–47.
GLSA, University of Massachusetts at Amherst.

Terry Crowley. 1992.An Introduction to Histori-
cal Linguistics, second edition. Auckland, NZ:
Oxford University Press.

Edward Finegan. 1999.Language: its structure
and use. Fort Worth: Harcourt Brace.

John Lynch. 1998.Pacific Languages: an Introduc-
tion. Honolulu: University of Hawai’i Press.

Kemal Oflazer, Sergei Nirenburg, and Marjorie
McShane. 2001. Bootstrapping morphological
analyzers by combining human elicitation and
machine learning. Computational Linguistics,
27(1):59–85.

David Penton, Catherine Bow, Steven Bird, and
Baden Hughes. 2004. Towards a general model
for linguistic paradigms.

Dan Tufis. 1989. It would be much easier if went
were goed. InProceedings of the 4th European
Conference of the Association for Computational
Linguistics U.K. Manchester, 1989.

